资讯

The library is specifically designed to efficiently perform block-sparse matrix-matrix multiplication of matrices with a relatively large occupation. Here, we compare the performance of the original ...
Sparse matrix computations are prevalent in many scientific and technical applications. In many simulation applications, the solving of the sparse matrix-vector multiplication (SpMV) is critical for ...
Sparse matrix computations are pivotal to advancing high-performance scientific applications, particularly as modern numerical simulations and data analyses demand efficient management of large ...
Real PIM systems can provide high levels of parallelism, large aggregate memory bandwidth and low memory access latency, thereby being a good fit to accelerate the widely-used, memory-bound Sparse ...
A novel AI-acceleration paper presents a method to optimize sparse matrix multiplication for machine learning models, particularly focusing on structured sparsity. Structured sparsity involves a ...